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Abstract. The optimization versions of the 3-PARTITIONING and the KERNEL 3-PARTITIONING problems are
considered in this paper. For the objective to maximize the minimum load of the m subsets, it is shown that the
MODIFIED LPT algorithm has performance ratios (3m − 1)/(4m − 2) and (2m − 1)/(3m − 2), respectively, in the
worst case.
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1. Introduction

Set partitioning problems generally ask for a partition of a given set of positive real numbers
into a given number of subsets such that the sums of elements in the subsets are as nearly
equal as possible. 3-PARTITIONING is one of the basic NP-complete problems (Garey and
Johnson, 1978), in which 3m elements have to be partitioned into m subsets each of which
contains three elements. In this paper we consider the following generalized version:

Given a set A of n positive numbers, i.e., A = {p1, p2, . . . , pn}, n ≤ 3m, we look
for a partition of A into m subsets such that each subset can contain up to three
elements and the sums of elements in the subsets (called loads) are “nearly” equal.

To achieve the near-equality, one may in one way minimize the maximum load of the m
subsets (i.e., makespan), or in another way maximize the minimum load of the m subsets.
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Fundamental Research Project of China.
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For the first objective, Kellerer and Woeginger (1993) presented a MODIFIED LPT algorithm
(denoted by MLPT in the following). At the beginning, all the m subsets are open to receive
elements. The MLPT assigns iteratively the largest unassigned element to an open subset
with the least current load. A subset which contains three elements is closed to which no
more element can be assigned by the algorithm. The algorithm terminates till every element
has been assigned to some subset. It is shown that the MLPT has a tight performance ratio
4/3 − 1/3m. Later, Kellerer and Kotov devised a better approximation algorithm with a
worst-case performance ratio 7/6. Recently, Babel et al. (1998) investigated the general
k-PARTITIONING problem where k ≥ 3. They devised an approximation algorithm with a
worst-case performance ratio 4/3. In this paper, we investigate 3-PARTITIONING under
the second objective. We will show that the MLPT has a worst-case performance ratio
(3m − 1)/(4m − 2).

Chen et al. (1996) proposed to study a variant of 3-PARTITIONING, called KERNEL

3-PARTITIONING. It can be described as follows:

Let A = {g1, g2, . . . , gm, p1, p2, . . . , pn} be a set of m + n(n ≤ 2m) elements, where
each gi is a kernel and it is a nonnegative number and each pi is an ordinary element
and it is a positive number. We look for a partition of A into m subsets such that
(1) each subset contains exactly one Kernel, (2) each subset contains up to three
elements, and (3) the loads of subsets are “nearly” equal.

It can be shown that KERNEL 3-PARTITIONING is NP-hard (Chen et al., 1996) as well.
Following Kellerer and Woeginger (1993), Chen et al. (1996) considered the objective of
minimizing the makespan. It was shown that the MLPT has a tight worst-case performance
ratio 3/2 − 1/2m. Here the MLPT first assigns the m kernels, one into a subset, then it
assigns the ordinary elements as the above MLPT algorithm does. In this paper, we also
investigate KERNEL 3-PARTITIONING to maximize the minimum load of the m subsets. We
will show that the MLPT has a tight performance ratio (2m − 1)/(3m − 2).

Strongly related to 3-PARTITIONING and KERNEL 3-PARTITIONING is the following fun-
damental problem in Scheduling Theory: Schedule n independent tasks non-preemptively
on a multiprocessor system, where the tasks are all available at time zero and machine
Mi (i = 1, . . . , m) is available at time gi . The goal is to look for a schedule to minimize the
makespan (Chang and Hwang, 1999; Lee, 1991; Lee et al., 2000), or maximize the minimum
machine completion time (Lin et al., 1998). We denote these two problems as P, gi‖Cmax

and P, gi‖Cmin, respectively. If all gi are zero, they become the classical scheduling prob-
lems initially proposed in Deuermeyer et al. (1982) and Graham (1969), which are denoted
by P‖Cmax and P‖Cmin, respectively, in the literature. P‖Cmax and P‖Cmin closely relate
to 3-PARTITIONING; while P, gi‖Cmax and P, gi‖Cmin relate to KERNEL 3-PARTITIONING.
To show their intimate relationship, Kellerer and Kotov gives an application of the approx-
imation algorithms for 3-PARTITIONING to the corresponding scheduling problem P‖Cmax.
Babel et al. (1998) also showed the relationship between the scheduling problems and the
k-PARTITIONING problem.

For most combinatorial problems, such as set partitioning and scheduling problems, it is
an important job to get the worst-case performance guarantee of a greedy-like approximation
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algorithm, such as the LPT-like algorithms in Scheduling Theory. One of the reasons is the
simplicity and the effectiveness of such algorithms. In fact, “LPT algorithm has been the
touchstone for the design of efficient off-line algorithms” (Chen, 1994). Another reason may
be theoretical since in many cases to get the worst-case performance ratio is not an easy task.
A typical example is the LPT algorithm for the above multiprocessor scheduling problem.
For P‖Cmin, due to the much profound difficulty of the maximin criterion, the worst-case
performance ratio of the LPT had not been worked out until 1992. Deuermeyer et al. (1982)
initiated this work in 1982. Ten years later, Csirik et al. (1992) proved that the exact ratio is
(3m − 1)/(4m − 2). In 1998, Lin et al. showed that the worst-case performance ratio of the
LPT for P, gi‖Cmin is (2m − 1)/(3m − 2). In this paper, we continue this line of work. We
will prove the worst-case performance ratios of the MLPT by employing the methods such
as minimal counterexample, domination and weighting function, etc. The proofs are very
technical and thus on the other hand show again the power of these “traditional” methods. In
addition to those traditional methods, we introduce a new technique—enlarging process—
in the proof of nonexistence of a minimal counterexample. This process enlarges some
elements in the given set to a specified value in order to get a contradiction. It is very
powerful and may be of independent interest.

In the following two sections, we prove the tight ratios of the MLPT algorithm apply-
ing to 3-PARTITIONING and KERNEL 3-PARTITIONING, respectively, under the objective of
maximizing the minimum load. Although the details of routines dealing with them are
very different, the ideas are quite the same. Therefore, we are going to give the full details
in Section 2, while Section 3 contains only the outline and some important “branching
points”. Before we start the main part, we list some useful notations: Let σ be the par-
tition of A yielded by the MLPT, σ = {A1, . . . , Am}, and σ ∗ be an optimal partition of
A, σ ∗ = {A∗

1, . . . , A∗
m}. As the MLPT partitioning process proceeds, denote Ci the sum of

the elements already assigned to Ai at a certain time, and call it the load of Ai at that time.
Denote C H

i and C∗
i the final load of Ai and A∗

i , respectively. Denote w = min1≤i≤m{C H
i },

and w∗ = min1≤i≤m{C∗
i }.

2. Performance of the MLPT applying to 3-PARTITIONING

In this section, we consider the 3-PARTITIONING problem under the objective of maximiz-
ing the minimum load. More specifically, we investigate the performance of the MLPT
algorithm. The whole section is devoted to proving

Theorem 2.1. The tight performance ratio of the MLPT is (3m − 1)/(4m − 2).

Recall that the worst-case performance ratio of the LPT applying to P‖Cmin is also
(3m −1)/(4m −2) (Csirik et al., 1992). Theorem 2.1 states that the additional restriction of
at most three elements per subset has no influence on the worst-case behavior of the MLPT.

Proof: The proof will be done by contradiction and hence we introduce first a minimal
counterexample. An m-counterexample is an instance of 3-PARTITIONING in which set
A contains n ≤ 3m positive numbers to be partitioned into m subsets, and for which
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w/w∗ < (3m −1)/(4m −2). (Note that there should be m ≥ 2.) A minimal counterexample
is an m-counterexample in the sense that the parameter m is the minimal, that is, no m ′-
counterexample exists with m ′ < m. Clearly, if the theorem doesn’t hold, then there exists
a counterexample. The existence of a counterexample implies the existence of a minimal
counterexample. Thus, suppose the minimal counterexample is an m-counterexample and
we can show that either it isn’t a counterexample or there exists an (m − 1)-counterexample,
we will get a contradiction. Indeed we will do this in the following.

Let I denote this minimal counterexample. W.l.o.g., we assume that the elements of A
are sorted as p1 ≥ p2 ≥ · · · ≥ pn . If during the MLPT partitioning process, the case—that
a closed subset has the least load at some time—doesn’t happen, that is, the MLPT behaves
just the same as the LPT for this particular instance, then we can draw the conclusion that for
I : w/w∗ ≥ (3m −1)/(4m −2) (Csirik et al., 1992). That means I is not a counterexample,
and hence reaches the contradiction. So we can assume that in the MLPT partitioning
process there is some time at which a closed subset has the least load—the MLPT cannot
assign the element under consideration to it because it contains already three elements.
Obviously, the load of this closed subset is exactly w.

It follows that if in I the number of elements n < 3m, then we may add 3m − n more
elements each having a value equal to pn into A. Adding these elements doesn’t change
the assignment of {p1, p2, . . . , pn} by the MLPT and thus doesn’t change the value w. On
the other hand, the new value of w∗ is equal to or larger than the old value of w∗ since there
are more elements to be partitioned. This tells us that w/w∗ does not increase and hence I
remains as a (minimal) counterexample. Thus, we may assume without loss of generality
that in I the number of elements n = 3m. It then follows that in any partition of A every
subset contains exactly three elements.

In the MLPT partition σ , we suppose the elements in Ai are pi1 , pi2 and pi3 with the
indices i1 < i2 < i3, which are called the first, second, and third element of Ai , respectively.
In the optimal partition σ ∗, we suppose A∗

i = {pi∗
1
, pi∗

2
, pi∗

3
} with the indices i∗

1 < i∗
2 < i∗

3
and call them the first, second, and third element of A∗

i , respectively, as well. Moreover,
we normalize the elements of A in such a way that w∗ = 4 − 2/m. It then follows that
w < 3 − 1/m. Furthermore, since the sum of all elements is at least 4m − 2, we derive that
the makespan of σ is greater than 4 − 1/m. ✷

Definition 2.1 (Csirik et al., 1992). A subset Ai = {pi1 , pi2 , pi3} in σ is dominated by a
subset A∗

j = {p j∗
1
, p j∗

2
, p j∗

3
} in σ ∗, if pir ≤ p j∗

r
, for r = 1, 2, 3.

We remark that if A∗
j dominates Ai , it is not necessary that the indices j∗

r ≤ ir for
r = 1, 2, 3. During the MLPT partitioning process, suppose Ak is the first subset which
is assigned three elements and its load is C H

k = w. For simplicity, denote s = k3, the
index of the third element in subset Ak . We enlarge all elements of A which are smaller
than ps to ps . Notice that for the reason the same as above this enlarging process does not
change the value of w, nor it decreases the value of w∗, and thus I remains as a (minimal)
counterexample.

Lemma 2.1 (Domination Lemma (Csirik et al., 1992)). For any i �= k, there is no subset
A∗

j in σ ∗ that would dominate subset Ai in σ .
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Proof: Suppose to the contrary that A∗
j dominates Ai , then we can get an (m − 1)-

counterexample I ′ by asking for a partition of set A′ = A\Ai into m − 1 subsets. The
reasons that I ′ is a counterexample are: (1) The MLPT partition of A′ is in fact identical
to the MLPT partition of A excluding subset Ai ; and (2) Deleting the subset A∗

j from the
optimal partition of A and replacing element pir by element p∗

jr
, for r = 1, 2, 3, will form

a partition of A′. In this partition, the minimum load is at least as large as w∗. Therefore,
the optimal partition of A′ has also a minimum load at least as large as w∗. But this contra-
dicts the minimality of the parameter m. Thus there shouldn’t be any subset A∗

j dominating
Ai . ✷

Lemma 2.2. During the MLPT partitioning process, at the time ps is assigned to subset
Ak, each of the other subsets contains at least two elements.

Proof: Suppose to the contrary, there is some subset Ai which contains only one (note that
there should be at least one) element pi1 . It is clear that i �= k, and pi2 = pi3 = ps . Assume
in the optimal partition σ ∗, pi1 is assigned to A∗

j then A∗
j dominates Ai , a contradiction to

Lemma 2.1. ✷

Corollary 2.1. p1 ≤ w − ps.

Proof: Noticing that if p1 > w− ps , then at the time ps is assigned to Ak , there is only one
element, which is p1, in the subset that contains p1. This is a contradiction to Lemma 2.2.

✷

Let f denote the largest index among those m second elements of subsets in the MLPT
partition σ , then f < s by Lemma 2.2. Suppose p f is assigned to subset Al by the MLPT,
i.e., f = l2, then pl1 = p1 (note: not necessarily the index l1 = 1). Similarly, we can
enlarge all elements pi ’s with s > i > f to p f .

Lemma 2.3. pi2 ≤ (w − ps)/2, for any i = 1, 2, . . . , m.

Proof: We will prove that pm+1 ≤ (w − ps)/2 in the following. The lemma then follows
directly. If pm+1 > (w− ps)/2, and suppose it is assigned to subset Ai in σ for some i , then
i �= k, pi1 = pm (note: again not necessarily index i1 = m) and the third element assigned
to Ai is equal to ps . Note that there is a subset in σ ∗, say A∗

j , which contains at least two
elements in {p1, p2, . . . , pm+1}. It follows that A∗

j dominates Ai , a contradiction. ✷

Since the makespan of the MLPT partition σ is greater than 4 − 1/m, from Lemma 2.2
we know that there is some subset Ai whose load exceeds 4 − 1/m − ps at the time ps is
assigned to Ak . Suppose that, during the MLPT partitioning process, Au is the first subset
with its load exceeding 4 − 1/m − ps and it is the element px that assigning it to Au makes
the load exceed 4 − 1/m − ps . We note that element px might be the second or the third
element in subset Au . Now we trace back the partial MLPT partition obtained at the time
right after px is assigned to Au . Let Cu denote the load of Au at that time, and Q0 = Cu − px ,
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then

Q0 + px = Cu > 4 − 1

m
− ps . (2.1)

We will get the contradiction by distinguishing two cases according to the position of px in
Au .

2.1. Case 1: px is the second element in Au

In this case, Q0 = pu1 . By Corollary 2.1 and Lemma 2.3,

1 <

(
4 − 1

m
− ps

)
− (w − ps) < px ≤ w − ps

2
<

3

2
− 1

2m
− ps

2
. (2.2)

Combining the latter part of (2.2) with (2.1), we derive that

Q0 >
5

2
− 1

2m
− ps

2
. (2.3)

Moreover, since Q0 = pu1 ≤ w − ps , we have

ps < 1 − 1

m
. (2.4)

The following lemma, which is an improvement of Corollary 2.1, holds in this case.

Lemma 2.4. p1 ≤ w − ps − p f .

Proof: Suppose to the contrary, then we have the first element of subset Al :pl1 = p1 >

w− ps − p f . Therefore, l �= k and Al = {pl1 , p f , pl3} where the third element pl3 has a value
equal to ps . However, by Corollary 2.1 and (2.4), pl1 + 2ps≤ (w − ps) + 2ps = w + ps< w∗.
That means the subset A∗

j containing element p1 contains another element which is larger
than or equal to p f . It then follows that Al is dominated by subset A∗

j , a contradiction. ✷

Corollary 2.2. p f < 1.

Proof: If p f ≥ 1, then we have p1 ≤ w − ps − 1 < 2 − 1/m − ps . Let A∗
j be the subset

in the optimal partition σ ∗ that contains ps , then the load of A∗
j is

C∗
j ≤ 2p1 + ps < 2

(
2 − 1

m
− ps

)
+ ps = 4 − 2

m
− ps < w∗,

a contradiction to the definition of w∗. ✷
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Define Q1 to be the minimum load of the subsets at the time right after element px is
assigned to subset Au . Recall that Q0 is the minimum load of the subsets before element
px is assigned to subset Au . Clearly, Q0 ≤ Q1. By (2.1) and Corollary 2.2, we know that
element px comes before element p f , that is, x < f . Therefore, Q1 ≤ p1 ≤ w − ps − p f .
Now we turn to consider element px+1: if it is larger than w − ps − Q1, then the subset
being assigned with this element will have a load exceeding w − ps at that time. It follows
that enlarging it to px would not affect its assignment by the MLPT, whatever it is the second
or the third element in the subset. After the assignment, we redefine Q1 as the minimum load
at that time and turn to consider element px+2. Note from the fact that pl1 + p f ≤ w − ps ,
that the redefined Q1 still satisfies Q1 ≤ w − ps − p f . Repeat this enlarging-redefining
process for elements px+2, px+3, . . . , till we meet some element px ′ which is smaller than
or equal to w − ps − Q1, with Q1 being newly defined (note: it might be the case that
x ′ = x + 1—the process enlarges nothing).

Since this enlarging-redefining process doesn’t enlarge element p f , it wouldn’t enlarge
element pk2 either. Moreover, the MLPT still assigns pk2 to Ak and assigns p f to Al , and
the subset Ak still has a final load w. That is, I remains as a (minimal) counterexample.
Let t0 denote the time that the enlarging-redefining process terminates. Recall that we have
Q0 ≤ Q1 ≤ w − ps − p f . At time t0, each of the unassigned elements so far is less than or
equal to w − ps − Q1 (called a small element) and each of the already assigned elements
is larger than or (enlarged to be) equal to px (called a big element).

Lemma 2.5. At time t0, there is some subset Ai which contains only one big element.

Proof: We first prove that at time t0, if Ai contains two or three elements, then its load (at
time t0) is greater than Q1. This is certainly true if subset Ai has three elements, since its
load is at least as large as w. If Ai contains only two elements and its load is at most Q1,
then the final load of subset Ai in the MLPT partition σ is at most w − ps , since its third
element must be a small element. This contradicts the definition of w.

But notice that at time t0 there is some subset whose load is equal to Q1 by definition. It
follows that there is only one element in this subset. ✷

Lemma 2.6. Any subset in the optimal partition σ ∗ contains at least two big elements.

Proof: From Q0 ≤ Q1 and (2.3), we know that if a subset A∗
j contains at most one big

element, then its load

C∗
j ≤ (w − ps − p f ) + 2(w − ps − Q1)

= 3w − 2Q1 − 3ps − p f

< 9 − 3

m
− 2

(
5

2
− 1

2m
− ps

2

)
− 3ps − p f

= 4 − 2

m
− (2ps + p f )

< w∗,

contradicting the definition of w∗. ✷
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In order to get the final contradiction, we weight the elements as follows:

W (pi ) =




1, if pi is a small element,

2, if pi ∈ [px , w − ps − px ],

3, if pi ∈ (w − ps − px , w − ps − p f ].

We extend this weighting function to a set S of elements to be the total weight of elements
in S.

Lemma 2.7. The weight of set A is W (A) ≥ 6m − 1 according to the MLPT partition σ .

Proof: For each subset Ai , if the first element pi1 satisfies pi1 ≤ w − ps − px , then
W (Ai ) ≤ 6. Otherwise, suppose pi1 > w − ps − px , but notice that the second element of
Ai satisfies pi2 ≤ (w − ps)/2 ≤ w − ps − px by Lemma 2.3 and the third element must
be small, we have W (Ai ) ≤ 6 too. That is, every subset has a weight at most 6. Looking
at subset Al , as p f is small and it is the second element of subset Al , we have W (Al) ≤ 5.
Therefore, W (A) ≤ 6m − 1. ✷

Lemma 2.8. The weight of set A is W (A) ≥ 6m according to the optimum partition σ ∗.

Proof: For each subset A∗
j , if its first element p j∗

1
is greater than w− ps − px , then clearly

we have W (A∗
j ) ≥ 6 by Lemma 2.6. If A∗

j contains only two big elements and they both
are less than or equal to w − ps − px , then by (2.1) and (2.2) its load

C∗
j ≤ 2(w − ps − px ) + (w − ps − Q1)

= 3w − 3ps − px − (Q1 + px )

< 9 − 3

m
− 3ps − 1 −

(
4 − 1

m
− ps

)

= 4 − 2

m
− 2ps

< w∗,

a contradiction to the definition of w∗. If A∗
i contains three big elements, then definitely

W (A∗
i ) ≥ 6. Therefore, W (A) ≥ 6m. ✷

Lemma 2.7 and Lemma 2.8 tell us that the weight of set A can be neither greater than
6m − 1 nor less than 6m. This is impossible. The impossibility shows that for instance I
Case 1 cannot happen.

2.2. Case 2: px is the third element in Au

In this case, Q0 = pu1 + pu2 . Clearly we have Q0 ≤ w − ps and hence px > (4 −
1/m − ps) − (w − ps) > 1 by (2.1), and Q0 ≥ 2(4 − 1/m − ps)/3. It follows that
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ps ≤ w − Q0 < 1 − 1/m, which in turn followed Q0 > 5/2 − 1/2m − ps/2. Therefore,
inequalities (2.2), (2.3) and (2.4) still hold in this case. It can be checked that Lemma 2.4 is
true too, as well as Corollary 2.2.

Likewise, we define Q1 to be the minimum load of subsets at the time right after element
px is assigned to subset Au . From Lemma 2.4, Corollary 2.2 and px > 1 we derive that
Q1 ≤ w − ps − p f . Now we arrive at a situation just the same as in Case 1. And the same
arguments can show that for instance I Case 2 cannot happen either.

2.3. Tightness

The above discussion says that element px cannot be the second element, neither the third
element of subset Au . Therefore such a minimal counterexample I doesn’t exist. In other
words, we have for any instance I, w/w∗ ≥ (3m − 1)/(4m − 2). The following example
shows the tightness of the performance ratio.

Example 2.1. In this instance, the set A = {p1, . . . , p3m−1}, where pi = 2m − � i+1
2 � for

i = 1, 2, . . . , 2m, and pi = m for i = 2m + 1, 2m + 2, . . . , 3m − 1.

It is easy to check that for this instance, w = 3m − 1 and w∗ = 4m − 2. This finishes
the proof of Theorem 2.1.

3. Performance of the MLPT applying to KERNEL 3-PARTITIONING

In this section, we examine the performance of the MLPT algorithm applying to KERNEL

3-PARTITIONING under the objective of maximizing the minimum load. We prove the
following

Theorem 3.1. The tight performance ratio of the MLPT is (2m − 1)/(3m − 2).

In Lin et al. (1998), the authors proved that the worst-case performance ratio of the LPT
algorithm applying to P, gi‖Cmin is (2m − 1)/(3m − 2). The above theorem states that the
additional restriction of at most three elements per subset has no influence on the worst-case
behavior of the MLPT algorithm.

Proof: The ideas behind the proof are similar to those in the proof of Theorem 2.1.
We first introduce the minimal counterexample, then present several lemmas correspond-
ing to those lemmas in Section 2. The proofs of them can be similarly done and thus
omitted.

An m-counterexample is an instance of KERNEL 3-PARTITIONING in which set A contains
m nonnegative KERNELs and n ≤ 2m positive ordinary elements to be partitioned into m
subsets, and for which w/w∗ < (2m − 1)/(3m − 2). (Note that there should be m ≥ 2.) A
minimal counterexample is an m-counterexample in the sense that the parameter m is the
minimal, that is, no m ′-counterexample exists with m ′ < m. Clearly, if the theorem doesn’t
hold, then there exists a counterexample. The existence of a counterexample implies the
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existence of a minimal counterexample. Thus, suppose the minimal counterexample is an
m-counterexample and we can show that either it isn’t a counterexample or there exists
an (m − 1)-counterexample, we will get a contradiction. Indeed we will do this in the
following.

Let I denote this minimal counterexample. W.l.o.g., we assume that the elements of A
are sorted as g1 ≥ g2 ≥ · · · ≥ gm = 0 and p1 ≥ p2 · · · ≥ pn . Similarly as in Section 2,
we can assume that in the MLPT partitioning process there is some time at which a closed
subset has the least load — the MLPT cannot assign the element under consideration to it
because it has already three elements. Obviously, the load of this closed subset is exactly
w. Furthermore, we may also assume that there are exactly 2m ordinary elements in A,
and henceforth in each partition of A every subset contains one kernel and two ordinary
elements. Without loss of generality, we assume that in both the MLPT partition σ and the
optimal partition σ ∗, a subset with index i contains the kernel gi . In the MLPT partition σ ,
the elements in Ai are gi , pi1 , and pi2 with indices i1 < i2. pi1 and pi2 are called the first
and the second element of Ai , respectively. In the optimal partition σ ∗, A∗

i = {gi , pi∗
1
, pi∗

2
}

with indices i∗
1 < i∗

2 , and pi∗
1

and pi∗
2

are called the first and the second element of Ai ,
respectively, as well. Moreover, this time we normalize the elements of A in such a way that
w∗ = 3 − 2/m, and thus w < 2 − 1/m. It then follows that the makespan of σ is greater
than 3 − 1/m.

Definition 3.1. A subset Ai = {gi , pi1 , pi2} inσ is dominated by a subset A∗
j = {g j , p j∗

1
, p j∗

2

in σ ∗, if pir ≤ p j∗
r

for r = 1, 2 and gi ≤ g j .

During the MLPT partitioning process, let Ak denote the first subset which is assigned
two ordinary elements and its load is C H

k = w. Let s denote the index of the second element
in Ak . Enlarge all ordinary elements of A which are smaller than ps to ps .

Lemma 3.1 (Domination Lemma (Lin et al., 1998)). For any i �= k, there is no subset A∗
j

in σ ∗ that would dominate subset Ai in σ .

Proof: The proof is similar to that for Lemma 2.1. ✷

Lemma 3.2. During the MLPT partitioning process, at the time ps is assigned to subset
Ak, each of the other subsets contains at least one ordinary element.

Proof: The proof is similar to that for Lemma 2.2. ✷

Corollary 3.1. g1 ≤ w − ps.

Proof: The proof is similar to that for Corollary 2.1. ✷

Let f denote the largest index among those m first ordinary elements in subsets in σ , and
suppose p f is assigned to subset Al by the MLPT, i.e., f = l1, then gl = g1 and f < s.
Enlarge all elements pi ’s with s > i > f to p f .
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Lemma 3.3. p1 ≤ w − ps, ps < 1 − 1
m , g1 ≤ w − ps − p f , and p f < 1.

Proof: The proof of p1 ≤ w − ps is done by contradiction. Since the load C∗
m of A∗

m
satisfies w∗ ≤ C∗

m ≤ 2p1, we have ps < 1
2 ≤ 1 − 1/m by Corollary 3.1. The proof of

g1 ≤ w − ps − p f is similar to the proof of Lemma 2.4; and the proof of p f < 1 is similar
to the proof of Corollary 2.2. ✷

Since the makespan of the MLPT partition σ is greater than 3 − 1/m, we know that
there is some subset Ai whose load exceeds 3 − 1/m − ps at the time ps is assigned to Ak .
During the MLPT partitioning process, let Au denote the first subset with its load exceeding
3 − 1/m − ps and let px denote the element that assigning it to Au makes the load exceed
3 − 1/m − ps . We note that element px might be the first or the second element in Au .
Now similarly we trace back the partial MLPT partition obtained at the time right after
element px is assigned to Au . Let Cu denote the load of Au at that time, and Q0 = Cu − px ,
then

Q0 + px = Cu > 3 − 1

m
− ps . (3.1)

We distinguish also two cases to get the contradiction.

3.1. Case 1: Q0 < px

In this case, px is the first element of Au and Q0 = gu . Furthermore,

px >
3

2
− 1

2m
− ps

2
,

Q0 >

(
3 − 1

m
− ps

)
− (w − ps) > 1.

(3.2)

It follows that element px comes before element p f by Lemma 3.3. Define Q1 to be the
minimum load of subsets in σ obtained at the time right after px is assigned to Au . We have
Q0 ≤ Q1 ≤ w − ps − p f . By using a same arguments (the enlarging-redefining process)
as in Subsection 2.1, we conclude that the enlarging-redefining process terminates before
the MLPT assigns elements p f . Say at time t0, then we still have Q1 ≤ w − ps − p f

and each of the unassigned elements is less than or equal to w − ps − Q1 (called a small
element) and each of the already assigned elements is larger than or equal to px (called a big
element).

Lemma 3.4. At time t0, there is some Ai which contains no ordinary element but kernel
gi .

Proof: The proof is similar to that of Lemma 2.5. ✷

Lemma 3.5. Every subset in the optimal partition σ ∗ contains at least one big element.
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Proof: The proof is similar to that of Lemma 2.6. ✷

At time t0, if no subset contains two big elements, then from Lemma 3.4, we know that
set A contains at most m − 1 big elements. This contradicts Lemma 3.5. Thus we conclude
that there is some subset which contains two big elements at time t0. It then follows that
Q1 ≥ px (note that px is an smallest big element). Combining this with the former part of
(3.2), we have

Q1 ≥ px >
3

2
− 1

2m
− ps

2
. (3.3)

Lemma 3.6. If kernel gi ≥ (w − ps − p f ) − px , then subset A∗
i contains two big

elements.

Proof: Suppose subset A∗
i contains up to one big element, then by Lemma 3.3 and (3.1),

we have

C∗
i ≤ (w − ps − p f ) − px + (w − ps) + (w − ps − Q1)

= 3w − 3ps − p f − px − Q1

< 6 − 3

m
−

(
3 − 1

m
− ps

)
− 3ps − p f

< w∗,

a contradiction to the definition of w∗. ✷

Now we introduce our second weighting function W (·) as follows:

W (pi ) =
{

1, if pi is a small element,

2, if pi is a big element;

W (g j ) =
{

1, if g j ≤ (w − ps − p f ) − px ,

2, if g j > (w − ps − p f ) − px .

We define the weight W (S) of a set S as the total weight of elements in S.

Lemma 3.7. The weight of set A is W (A) ≤ 5m − 1 according to the MLPT partition σ .

Proof: For any subset Ai in σ , if gi ≤ (w − ps − p f ) − px , then clearly W (Ai ) ≤ 5. If
gi > (w − ps − p f ) − px , then subset Ai contains at most one big element since Q1 ≤
w − ps − p f < gi + px . Therefore, W (A j ) ≤ 5 too. Looking at subset Al , as p f is small
and it is the first element of Al , W (A j ) ≤ 4. It follows that W (A) ≤ 5m − 1. ✷

Lemma 3.8. The weight of set A is W (A) ≥ 5m according to the optimal partition σ ∗.
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Proof: For any subset A∗
i in σ ∗, if it contains two big elements, then we have W (A∗

i ) ≥ 5.
If A∗

i contains only one big element, then by Lemma 3.6, there should be gi > (w − ps −
p f ) − px . Therefore, W (A∗

i ) ≥ 5. From Lemma 3.5 we derive that every subset in σ ∗ has
a weight at least 5 and thus W (A) ≥ 5m. ✷

The odds between Lemmas 3.7 and 3.8 implies that for instance I Case 1 cannot happen.

3.2. Case 2: Q0 ≥ px

In this case, we have Q0 > 3
2 − 1

2 m − ps

2 , i.e., (3.3) holds. On the other hand, we also have
px > 1. Therefore element px comes before element p f too (by Lemma 3.3). Define Q1

similarly, then we have also Q0 ≤ Q1 ≤ w − ps − p f . We then arrive at a situation the
same as in Case 1. Therefore, the same argument applies and for instance I this case cannot
happen either.

3.3. Tightness

Since px can neither be less than Q0, nor can it be greater than or equal to Q0, this
minimal counterexample doesn’t exist. In other words, we have for any instance, w/w∗ ≥
(2m − 1)/(3m − 2). The following example shows the tightness of the performance ratio.

Example 3.1. In this instance, set A = {g1, g2, . . . , gm, p1, p2, . . . , p2m−1}, where g j =
m − j for j = 1, 2, . . . , m; and pi = 2m − i for i = 1, 2, . . . , m, and pi = m for i =
m + 1, m + 2, . . . , 2m − 1.

It is easy to check that for this instance, w = 2m − 1 and w∗ = 3m − 2. This completes
the proof of Theorem 3.1. ✷
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